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Nannies, Machines, and Population Growth:
How Could the Automation of Childcare
Affect Economic Growth?

Abstract

This dissertation investigates the potential for artificial intelligence (Al) to impact
long-run economic growth through its effect on fertility. While recent Semi-
Endogenous Growth (SEG) frameworks have explored Al-driven automation in
production and idea creation, little attention has yet been given to how automation
may alter household decisions by automating parenting tasks. We develop a task-
based Semi-Endogenous Growth model in which fertility is endogenously
determined and influenced by the level of Al-driven automation in childcare. The
model integrates insights from Zeira (1998), Doepke et al. (2023), and Jones (2022),
allowing automation to alter the cost distribution of childrearing and impact
household fertility decisions.

A closed-form solution for fertility is derived under time and budget constraints.
Preliminary results suggest that automation could significantly raise fertility in
certain settings, providing a novel pathway through which policy can aim to
mitigate the global decline in fertility.

This framework offers a new theoretical channel for understanding automation’s
role in sustaining growth and suggests that household-level automation has the
potential to become an increasingly relevant component of demographic policy
discussions.
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1. Introduction

Research Motivation, Question, and Contribution

Modern growth theory sees long-run economic growth as fundamentally reliant on the
continuous production of new technologies?, which increase the productivity of workers.
Within the Semi-Endogenous Growth (SEG) framework specifically, new technologies become
harder and harder to find as the economy’s technological level increases.

Population growth then becomes a crucial component of long-run economic growth as it
provides a way to mitigate the decreasing returns to innovation by supplying more idea-
generating agents. Jones (2022) implies that (currently) population growth is our only source
of long-term economic growth, despite accounting only for roughly 20% of observed economic
growth of the past +50 years.?

Concerningly, however, global fertility rates have been falling steadily; the UN’s projections
(which we plot on Figure 1) now predict that global population will peak around 10.3 Billion
in the mid-2080s (United Nations, 2024), posing a significant structural threat to the only long-
term driver of economic growth, according to SEG theory.*

Figure 1: UN Population Growth Estimations and Projections (1950-2100)
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2 Also referred to as ideas, knowledge, or innovation.

3 He explains the remaining 80% as ephemeral level effects; bound to gradually stop driving global economic
growth.

4 As illustrated in Jones (2020, 2022) with the situation dubbed ‘the empty planet scenario” - where the fall of
population growth leads to stagnating knowledge and living standards for a population that vanishes.
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Doepke et al. (2023) propose a model for endogenous fertility which explains its gradual
decrease as resulting from two main underlying trends:

(1) Higher female wages which, in turn, increase the relative time opportunity-cost of
childrearing, making it a less attractive option.

(2) A decreasing societal preference for large families, possibly influenced by Malthusian fears
of overpopulation.

Turning to a seemingly different but closely related matter, technological change - specifically
the advent of general-purpose artificial intelligence (Al) - is reshaping sectors traditionally
resilient to automation, including caregiving and education. Evidence from Japan's
deployment of robotic eldercare analysed by Broadbent et al. (2009), the efficiency of Al-
assisted learning platforms evaluated by Luo and Hsiao-chin (2023) - even the emergence of
the satirical term ‘iPad Kid’5 - all signals point to technology playing an increasingly important
role in childrearing. This shift, emphasized by the development of Al, suggests that
automation - a biproduct of technological advancement - could increasingly substitute for
parenting labour, potentially impacting fertility rates by altering household dynamics.

Yet, no existing economic framework explicitly connects technological change to household-
level fertility choices, signalling an overlooked channel which this paper will focus on by
addressing the following research question:

Given the new implications of Al for automation, how might applying it to childcare affect the household
fertility dynamics that govern long-run economic growth? Could the automation of childcare help
mitigate the causes of Jones” (2020) empty planet scenario?

To answer this, we develop a theoretical framework rooted in the SEG setting, where fertility
is endogenized as the outcome of a utility maximisation problem a la Doepke et al. (2023).
Households balance the consumption of goods and the number of children under both time
and budget constraints. We structure the cost of childrearing using a task-based approach
inspired by Zeira (1998), which enables its gradual automation.

A key innovation of the model is the introduction of an automation boundary, which
represents the level of childcare automation, endogenously determined by the economy's
technological level. As the level of technology is raised, the automation boundary expands,
progressively reducing the time burden of childrearing and influencing household fertility
choices.

By creating a link between the endogenous creation of technology from Jones” (2022) SEG
framework to the level of childrearing automation, the model offers a novel mechanism,
circularly linking technological progress to the demographic outcomes that govern it. In so
doing, it contributes not only to the literature on automation and economic growth but also to
the broader question of how technology might fundamentally alter the demographic
foundations of idea production, labour supply, and long-run economic growth.

5 Coined in popular culture to describe children given excessive and arguably harmful screen time for parental
convenience (Parents, 2024).
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2. Literature Review

This section reviews the strands of literature that inform the construction of the dissertation’s
theoretical model. It is divided into three parts: the SEG framework and its relationship to
population, the integration of Al-driven automation within economic growth models, and
recent attempts to link Al with fertility dynamics. Throughout, we highlight key contributions
and identify where existing models leave space for the innovation proposed in this
dissertation.

2.1. Semi-Endogenous Growth, Population, and AI Automation

The SEG framework, formalized by Jones (1995, 2022), asserts that sustained long-run growth
requires ongoing idea production, which faces diminishing returns over time. Population
growth is critical in this framework, as it supplies the increasing number of researchers
necessary to counteract these decreasing returns. However, declining fertility rates globally
(United Nations, 2024) threaten this mechanism, creating a vulnerability in traditional SEG
models.

Attempts to address this vulnerability have incorporated Al-driven automation into SEG
settings. Aghion et al. (2019) propose that Al could replace human labour not only in final
goods production but also in idea creation, mitigating the reliance on population growth.
However, their model introduces a significant limitation: under plausible parameter values, it
predicts singularities where output grows infinitely in finite time, an empirically and
theoretically unrealistic result. Jones (2022) notes this flaw and suggests that although Al may
substitute for human inputs, its effects on demographic dynamics remain underexplored.

A related contribution by Gries and Naudé (2020) circumvents the singularity issue by treating
idea creation as exogenous and focusing instead on endogenous technology adoption. While
their approach stabilizes the growth path, it decouples population size from innovation,
limiting its applicability for models concerned with demographic feedbacks. Thus, while Al’s
potential to sustain growth has been recognized, the interaction between Al-driven
automation and fertility decisions remains largely absent from the current SEG literature.

2.2. Task-Based Models of Automation and Household Dynamics

The task-based approach to modelling automation, originating with Zeira (1998) and
expanded by Acemoglu and Restrepo (2018), emphasizes heterogeneity in automation's
impact across sectors and tasks. Zeira's partial equilibrium model introduced the concept of
automation displacing labour in task-specific ways, while Acemoglu and Restrepo generalized
this into a dynamic, general equilibrium setting that integrates new task creation alongside
displacement. An automation frontier separates tasks performed by capital from those
performed by labour, based on a cost cutoff. Although these frameworks richly capture
market-sector dynamics, they have not been applied to childcare.

Critically, Acemoglu and Restrepo’s frontier advances when high wages make automation
profitable, so population growth - which tends to depress wages - reduces the incentive to
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automate, opposite to semi-endogenous-growth logic where more people — more researchers
— faster innovation.

By contrast, household adoption of AI childcare tools hinges on technological capability
(speech-recognition accuracy, safety standards) rather than parental wages. This motivates our
use of a tech-pushed automation boundary: growing purely as a function of technology,
featuring an explicit capability threshold A, and capping out at a ceiling AN of automatable
tasks. Transposing and adapting the task-frontier concept in this way captures the direct link
between tech-readiness and a reduced time costs of parenting - an essential channel for the
fertility feedback we want our model to capture.

Incorporating these insights into growth models has enhanced the realism of automation
effects on labour markets and aggregate output. However, existing applications of task-based
automation - including those in Aghion et al. (2019) and Jones (2022) - largely focus on
production and idea creation sectors. Little attention has been paid to how task automation
could penetrate non-market sectors such as household labour, specifically parenting tasks that
heavily influence fertility decisions.

This omission is significant. The same mechanisms that make non-routine cognitive tasks
automatable in production settings suggest that parts of childcare and early education could
similarly be automated (Broadbent et al., 2009; Luo and Hsiao-chin, 2023). Current growth
models thus overlook a potentially important channel through which AI can indirectly but
materially alter macroeconomic outcomes by affecting household-level decision-making.

2.3. AI and Fertility: Indirect and Direct Mechanisms

The sparse literature on Al and fertility generally treats Al's influence as operating through
labour market adjustments. Wei and Xie (2022) model Al-induced changes in wages and
working hours as affecting fertility indirectly by altering the opportunity cost of childbearing.
While valuable, this approach assumes that Al does not alter the production function of raising
children itself, only the broader economic environment in which fertility decisions are made.

By contrast, the model proposed in this dissertation explores a direct channel: Al-driven
automation of childcare tasks reduces the time and financial costs of childrearing, modifying
the household utility-maximization problem at its core. This represents a substantive
departure from existing frameworks, which generally treat the time and cost parameters in
fertility models as technologically static (Doepke et al., 2023).

Thus, while current models recognize Al's transformative economic potential, they
underestimate its ability to alter demographic foundations directly. Addressing this gap by
endogenizing task automation within the fertility decision is essential to understanding the
full macroeconomic consequences of recent technological breakthroughs.
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3. The Model

3.1. Overview and Intuition

The intuition of the model is as follows: the level of technology A, (set by the A; = Ny,
SEG model) sets the level of childcare automation N,,. This in turn '
determines how many childrearing tasks incur a monetary ¥ (automated)

rather than a time ¢ (performed by parents) cost. The distribution of these L b,
costs directly impact households’ fertility choice n, which drives the ’
population growth needed for technological development, and thereby &n A%
economic growth. A summary of the model’s setup equations is available in t
Appendix (A.2.)

3.2. Growth Dynamics

The production side of the economy follows Jones” (2022) standard SEG model, composed of
two production sectors: final goods and ideas.

Final Good Output Y, is produced according to the following Cobb-Douglas function:
Y, =ALy, (1)

Where A, represents the stock of ideas (or level of technology) at time ¢, Ly, is the amount of
labour allocated to final good production, and g, is the elasticity of output with respect to the
stock of knowledge.

The growth rate of technology 4,/A,° is determined by equation (2) in which z represents the
productivity of researchers, L, is the number of researchers in the economy, and f >0
captures the decreasing returns to technological advancement.
A, -
= 2laA," 2)
t

As A; grows, idea production becomes increasingly difficult, necessitating a larger research
workforce to sustain the same rate of technological growth.

3.3. Population Dynamics

The economy’s total workforce L, is exogenously split between production and research by
parameter I € [0,1]:

Lpe

Li=Lgs+ Ly, L.
Y.t

l (3,4)

6 Where the dot notation 4, denotes the time derivative of 4,.
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While population growth is determined endogenously through household fertility decisions.
Specifically, the growth rate of the total workforce L,/L; during period t is given by:

L

L—: = nt —m (5)
Where m represents an exogenous per-household mortality rate parameter and n, denotes the
economy’s number of children per household at time t, endogenously determined by a
household-level utility maximisation problem (section 3.5.). Essentially, equation (5) serves as
the link which ties the outcome of our fertility decision model (n;) to population growth within
the SEG model.

3.4. Automation of Childcare

Before setting the household’s maximisation problem, we define the mechanism through
which the technological output of the economy A; can influence fertility decisions by
increasing the automation of childcare as the economy’s technology level A, rises. This is the
principal contribution of this model to the literature, as it creates a novel link between macro-
economic outcomes (in this case technological growth) and demographic tendencies. It does
so through the creation of the automation boundary N,, - endogenously determined as a
function of A; - which represents the level of childcare automation.

Drawing from the task-based approach (Zeira 1998, Acemoglu and Restrepo 2018), our model
sees childrearing as a collection of parenting tasks. Each period, parents must complete an
exogenous number N of tasks per child in their household. The per-period effort E; required
to raise a child is therefore given by equation (6), where X represents the cost of task i € [1, N].

N
E, = in,t (7)
i=1

When a task becomes automated it goes from incurring a time cost ¢ to a monetary cost 3 such
that:

X - we if i€ (Ny,N| (manual task) ®
" ly ifie[1,N,] (Automated task)
Equation (7) can then be rewritten as:
Ngy N
E, = Z Y+ Z we = YNy + wp(N — Ny ) 9)
l=1 l=NA,t+1

Childrearing efforts are then endogenously split between time and monetary costs according
to the automation boundary N, ;, whose laws of motion are defined by the following equation,
inspired by Acemoglu and Restrepo’s “automation frontier”, but developed as an original
contribution of this model:

. N
Ny = AT (1 - ﬁ) (1 — &) (6)
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Each period, the amount of newly automated tasks N, ; is determined by three factors, each
representing an underlying assumption of how our model sees the potential automation of
childcare:

o A" The level of automation of childcare tasks depends on the economy’s technology
level (raised to an elasticity parameter a,,). 4, is the only endogenous determinant of
NA,t'

J (1 - %): Some childrearing tasks cannot be automated. Certain aspects of parenting -

such as emotional bonding, moral guidance, or unstructured play - are inherently
resistant to automation. Regardless of how advanced technology becomes, certain tasks
will always remain a parent’s responsibility.

The model therefore imposes a ceiling on childcare automation by scaling the increase

inNy, by 1— %, where parameter A € [0,1) represents the maximum portion of tasks

that can be automated. As N, ; approaches AN, automation gradually slows down to a
stop.

o (1-— e Uai=40): The automation of childcare can only begin once the economy
surpasses an exogenously determined technology level A.;. The underlying
assumption here is that a significant level of technology must be reached before
automation reaches the childcare sector.

This mechanic is modelled through the exponential smoothing term 1 — e*(ai=40),
where the k parameter controls how gradually automation ramps up once A, exceeds
Acrit-

These dynamics are simulated and illustrated in Section 4.1 (Figure 2)

3.5. Household Childbearing Decisions

As previously outlined (Section 3.3., Equation 5), our model’s population growth rate is
obtained by subtracting the exogenous mortality rate m from the per-household fertility rate
ny. This formulation enables population growth to depend on the number of children per
household n;, endogenously determined by a household utility maximisation framework a la
Doepke et al. (2023). To close our model, we will incorporate our Zeira (1998) inspired
automation dynamics, whereby technological progress influences the cost distribution of our
household utility maximization problem, thus inter-linking technological progress,
automation, population dynamics, and economic growth.

3.5.1. Household Preferences

As in Doepke et al. (2023), households derive utility from both consumption ¢ and number of
children n. Preferences are represented by a separable log-utility function:

u(c,n) = log(c) + 6 log(n) (10)

10
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Where &8 > 0 captures the relative importance of fertility compared to consumption.
Households face both time and financial constraints when deciding how many children to
have. Crucially, the model allows for technological progress to reduce these costs via
automation of childcare tasks.

3.5.2. Time and Budget Constraints

Both agents of the household spend all their time either working or performing childrearing
tasks. The time portion 4, of period t that the household spends working is therefore equal to
1 minus the time spent taking care of its children:

Ae=1-n,p(N—Ng,) (11)

If the household has no children, it will spend all of period t working which will yield wage
w. For simplicity, we assume households do not either save or invest. The capital they earn
during period t is entirely spent either on their children or on consumption.

Wﬂ,t = Ct + ntleA‘t (12)

3.5.3. Solving for n,
We substitute (11) into (12) and set up the household’s utility maximisation problem:

max: log(c,) + 8log(n,) s.t. w(1—n,(N—Ny)p) =c, +nNyp (13)

Ce, Nt

By substituting the budget constraint into the objective function and taking the first-order
condition, we solve for a closed-form solution for optimal fertility (Appendix A.2.).

B o w
" 14+8 wp(N—Ny,) + PNy,

n; (14)

3.6. Balanced Growth Path (BGP)

The BGP is a situation in which the model’s major variables all grow at constant rates. To find
an expression for those rates, we first calculate the growth rate g, of output per capita y.

o
Ye = L% = %I;Yt (15)
Recalling equations (3) and (4):
Lye=(1-DL, = y,=471-1D (16)
Which yields:
9y = 0y9a (17)
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3.6.1. Long-Run Technological Growth (g,)
Recalling the technological growth equation (2) as well as equations (3) and (4), % can be
t
expressed as:
Ay

_ B
i zIL, A, (18)

Which, along the BGP, yields the (constant) technological growth rate g,.

9a = (19)

3.6.2. Long-Run Population Growth (g;)

Recalling equations (10) and (12) we know that - as a function of A, - Ny, converges either to
zero (if Ay < Agit) or to its saturation point AN. Therefore, along the BGP, n, converges to:

. 0 _ w 20
" T146 wp(N —AN) + YAN (20)

The population growth rate along the BGP is therefore given by:

go=n"—m (21D

3.6.3. Long-Run Output Growth (g,)

Substituting (19) and (21) into (17) gives us the constant growth rate of output g, along the
BGP:
n*—m
9y = 0y B (22)

In keeping with standard SEG theory, the long-term growth rate of output is dependent on
fertility’s relative strength to the decreasing rate of idea production . The nuance our model
brings, however, is that it treats population growth as an endogenous variable - rather than a
constant rate - whose level depends on a multitude of underlying assumptions about
automation’s potential, in light of the new implications that Al has brought to the debate.
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4. Quantitative Analysis

4.1. Simulated Dynamics of N4,

As discussed in section 4.4., the automation boundary is endogenously determined as a
function of A; (Equation 9). To better illustrate the dynamics of our novel automation
boundary, we run a simulation” where we plot the evolution of N, in function of A,, ceteris
paribus.

Figure 2: Automation Boundary N 4 ; in Function of Technology Level A,
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Figure 2 above shows the output of that simulation, from which we observe that plotting Ny ,
against A, yields a sigmoidal®, or s-shaped, curve which only departs from 0 once 4; > At
Inputting different values for x in the algorithm will change the rate at which childrearing
tasks are replaced by automation (slope of the red line on Figure 2). Changing A changes
where along the x axis N, ; starts accumulating, and changing A sets the upper bound for our
automation boundary N ..

7 The code scripts for all simulations are included in Appendix (A.4.)
8 But not logistic since the acceleration and slowdown of N, in function of A, is controlled by 2 different terms,
allowing them to be asymmetric.

13



(2126980)

4.2. n, Comparative Statics

We recall the fertility solution (Equation 14), run comparative statics analysis on it, and
conduct ceteris paribus simulations to analyse the behaviour of our fertility rate over changes
in all its determining factors.

6 w
_ . 23
M wp(N - N+ N @)
4.2.1. Preference for Childrearing ()
on; _ 1 . w (24)
08  (1+8)? wop(N—Nyp)+ PNy,
on;
—>0 25
=755 (25)

As in Doepke et al. (2023), an increase in households’ preference for childrearing, ceteris
paribus, unambiguously results in an increase in the fertility rate. The slope at which it
increases is shown in the plotted simulation on Figure 3.

Figure 3: Plotted Simulation of n, over §
2.54

2.0

1.51 _ n(é)

an
1.0 06

0.54

0.0+

WV

4.2.2. Average Time-Cost of Childrearing Tasks (¢)

on, & w2(N — Ny )
dp 146 [wop(N — Ny o) + N, ]

5 (26)

on;
Lo

d¢

<0if Ny <N

=0if: Ny =N (27)
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Equations (26) and (27) show that as the average time-cost ¢ rises, fertility n, declines
whenever N, < N, with the effect disappearing when automation is complete (N, ; = N). The
magnitude of ¢’s impact decreases gradually as N, , approaches N, meaning the sensitivity is
proportional to the share of unautomated tasks. The simulations below (Figures 4 and 5)

illustrate these dynamics.
Figure 4: Plotted Simulation of n, over ¢ (Ng¢ = 0)

ols-- -
-1000
-2000 on
— n(¢) - =
-30001 o
-40001
-5000
o o
Figure 5: Plotted Simulation of n, over ¢ (Ng¢ = N)
y 0.050
4 0.0251
5
d
— n(¢) 0000+ - = 6—”
21 b
i -0.0251
ST -0.050
b ¢

4.2.3. Average Monetary Cost of Automated Tasks ()

ant _ 6 ) WNA,t (28)
oy 146 _ 2
[wp(N — Ny t) + PNy
ant i < 0 lf NA,t > O
MET {: 0 if: Ny,=0 (29)

Similarly to ¢, raising ¥ unambiguously lowers the fertility rate n,. However, the magnitude
of this effect is inversely scaled to ¢: as the number of automated tasks increase, the effect of
raising ¢ on fertility diminishes while that of raising 1 increase - as shown in Figures 6 and 7.

Figure 6: Plotted Simulation of n, over 1 (Ngp = 0)
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Figure 7: Plotted Simulation of n, over  (Ng¢ = N)
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4.2.4. Wages (w)

on, ) l/)NA,t
ow 146 _ 2 (30)
[wp(N — Ny t) + PNy
on, . (>0 if YN, >0
Zow {: 0if: Ny, =0 (D

Equations (30) and (31) show that as the wages increase, fertility rises proportionally to the
level of N4 ¢, with no effect when automation is absent (N ; = 0). Aslongas N, # N, the model
exhibits decreasing returns to wage increases, and n; converges to a constant as w — +oo, since
the unautomated tasks impose a hard ceiling on fertility gains. By contrast, if full automation
is achieved (N4 . = N), fertility increases linearly with w. Since that situation implies there are
no unautomated childcare tasks, the time cost of childrearing is null and household fertility
choices become solely dependent on how many children a household can afford. The
simulations below (Figures 8, 9, and 10) illustrate these dynamics.

Figure 8: Plotted Simulation of n, over w ; (Na = 0)
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Figure 9: Plotted Simulation of n, over w,; (Nyy € [1,N —1])
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Figure 11: Plotted Simulation of n, over w; (N, = N)
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4.2.5. Automation (N4,

o, 8 w(=we + 1)
ONyy 146 [qu(N - NA,t) + l/)NA,t]Z

(32)

Equation (32) is a pivotal takeaway from our model’s setup because it implies that the impact
of automation on fertility relies on the cost of automating tasks 1 relative to the wage adjusted
time-cost w¢ of those same tasks if they are performed manually:

>0 if: wp <
is {=0ift w¢p =y (33)
<0 if: wp >

on;
ONy ¢

Essentially, if the wage-adjusted time cost w¢ exceeds the monetary cost ¥ of automation,
expanding the automation boundary N, . reduces the overall cost of childrearing and increases
fertility (Figure 11). Conversely, if automation is relatively expensive (w¢ < ), then further
automation may lower fertility by raising household childcare costs (Figure 13). If both costs
are equal, then automation has no impact on fertility at all (Figure 12).

Figure 11: Plotted Simulation of n, over Ny ; (weg > )
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5. Model Discussion
5.1. Engaging with Deopke et al. (2023)

In Doepke et al. (2023),° the fall in fertility is partly explained as resulting from an increase in
female wages. This is achieved by setting up the model with heterogeneous female and male
wages Wy < Wy,. Since women earn a lower wage, they are assumed to perform all childrearing
tasks and use whatever time left to work, while men work full time. This results in the
following solution to the household’s utility maximisation problem:

(34)

where we can see intuitively that closing the gender pay gap reduces fertility while widening
the gap raises it. This conclusion, however is based on the questionable assumption that if the
household’s wife earns less than her husband - even marginally - she will perform all the
household’s childrearing tasks. We recommend future research to explore a different, possibly
more nuanced setup in which childrearing tasks are exogenously split between husband and
wife proportionately to the female-male wage ratio.

Nonetheless, setting up our model with this assumption is both simple and pertinent,
because it allows us to evaluate the conditions needed for automation to mitigate the fall of
fertility rates. Doing so results in a fertility solution that somewhat resembles Section 4.2. of
the Deopke et al. paper on the “Marketization of Childcare”:

6 Wi, + Wy
nt == -
148 Nygp+ (N = Ny )wpgp

(35)

Raising male wages here unambiguously raises fertility while raising the female wage has
ambiguous effects. We take the partial differential with respect to w; and set the FOC:

ong & Naep— (N = Nye)wop
owr 148 [N+ (N = Ny )wyo]’

=0 (36)

We study how g% behaves in function of Ns, (Appendix A.3.) we note that under the
f

conditions ¥ < wrgp and wy < wyy:

O o gim Peo Wm0 g m e >0 (37)
dwaN,, " Namodws  (1+ ONwZp - 0 Naewdws  (1+ 0N
ant NWm¢
— =0 when Ny, =N =—— (38)
owy At AT Y+ Wy, @

9 Specifically in Section 2.4.
10 Though not part of the original model explanation as it distracts from its main purpose.
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With no automation, the effect of increasing female wages is negative. As automation kicks in,
this effect becomes increasingly positive and, as the automation boundary reaches full
automation, increasing female wages increases fertility. There then exists a critical level of
technology N, where the negative effect of increasing female wages on fertility becomes
positive, as illustrated below (Figure 14).

Figure 14: Plotted R Simulation of % over Ny, € [0, N]
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By that logic, in the long-term, whether or not automation can fully reverse the phenomenon
described by Doepke et al. (2023), depends on the proportion of childrearing tasks that are
possible to automate A (Equation 6) satisfying the following condition:

Wm

A> A>———
Y+ wno

= (40)

Na
N
5.2. Limitations & Future Theory Research

5.2.1. Adoption of Automation
A core simplifying assumption of this model is that households universally and immediately
adopt childcare automation as soon as it becomes technologically feasible. In formal terms, the
automation boundary N, ; expands smoothly as a function of the technology level A, (Equation
6), determined by the interaction of technological progress A?y , the remaining share of
unautomated tasks 1 — N, /AN, and the activation term 1 — e (aic — At) that governs when

automation begins. This formulation fully captures the supply-side potential of automation
but abstracts from the demand-side dynamics of household adoption.

In reality, automation adoption is neither universal nor frictionless.! Economic, social, and
psychological factors strongly shape which households choose to adopt childcare automation
and when. High-income households may be early adopters due to affordability; lower-income
households may face prohibitive costs. Likewise, parents may resist automating certain tasks
they view as emotionally or developmentally critical, regardless of the technology’s
availability. As a result, the effective automation boundary influencing household fertility
decisions may lag well behind the maximum N, , implied by technological progress alone.

11 As is argued by Gries and Naudé’s (2022) “human services” partial equilibrium model of automation in,the
labour market.
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This distinction matters because the fertility solution (Equation 14) is highly sensitive to the
distribution of childcare costs across time and money. If automation reduces the average time
cost only partially or unevenly across households, the aggregate fertility response will be
smaller than predicted by the current model. Put differently, the model’s positive automation-
fertility-growth linkage critically depends on widespread and affordable adoption, not just on
technological readiness.

Future iterations of this model could endogenize adoption by introducing household
heterogeneity and adoption decisions. For example, the model could include an adoption
probability p;, determined by household income, preferences, or cultural attitudes, and define
the effective automation boundary Ng . as Ng, = ;=1 Ny p;. This would allow the model to
capture not just the supply of automation but also its diffusion, possibly yielding more realistic
predictions. Additionally, modeling network effects - where the likelihood of adoption
increases as more households adopt - would reflect real-world innovation diffusion patterns.

In summary, the current framework likely overstates automation’s demographic impact by
assuming immediate and uniform adoption. Relaxing this assumption could generate richer,
policy-relevant predictions on how affordability, inequality, and social acceptance mediate the
relationship between automation, fertility, and growth.

5.2.2. Improving the link between n, and L,

As it stands, our model’s link between fertility decisions n, and total workforce is slightly
oversimplified. Specifically, we define n; as the number of children per household at time ¢,
and we link this directly to population growth (Equation 5) without explicitly modelling the
time-lag between childbearing and entry into the workforce.

This effectively treats the model period as spanning roughly one generation (~ 18 years), which
is reasonable considering the scope of this dissertation being focused on the long-run effects
of technology on population growth. However, it means our current version of the model may
be overlooking shorter-term nuances that could impact fertility. For example, a gradual
societal shift where children take increasingly long to become financially independent would
increase the time duration of childrearing, and therefore its burden, potentially dampening
fertility decisions.

For a more accurate representation, future research could extend our framework to improve
the link between the household utility maximisation problem and workforce. One suggestion
we propose as an example would be to model household optimization over childbearing rather
than total children per household. Households would have the capacity of creating one child
per period t, which they will have to care for over an exogenously specified duration t before
that child transitions into the workforce. We could then express fertility as the probability b,
that a household would choose to produce a child during period t. In that case, population
growth becomes:

L, t

L—tzbt_r—m; nt=2bi (41)

R

2 T

Households still derive utility from their number of children and consumption. However, the
household’s budget constraint would need to be re-designed to express the costs b, as
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spanning over 7 periods rather than just one. Such an approach could allow richer exploration
of short-term population and labour force dynamics.

6. Conclusion & Policy Implications

This dissertation has developed a novel theoretical framework to examine how the automation
of childcare may affect the fertility decisions that drive long-run economic growth. By re-
designing Zeira’s task-based approach and Acemoglu and Restrepo’s automation frontier to
fit the context of parenting, it creates a new link between technology production and the
household dynamics of fertility. It then connects household fertility decisions back into SEG
population growth dynamics, establishing a feedback loop in which technology - under
certain conditions - can sustain the population growth needed to maintain long-run
innovation, and economic growth along a balanced growth path.

This research offers two key contributions:

(1) A novel mechanism through which technological progress can directly influence
population growth by automating time-intensive parenting tasks and converting them
into monetary expenditures, thereby altering fertility decisions and potentially
establishing supporting levels of demographic expansion consistent with long-run
economic growth.

(2) A policy-relevant insight: If we believe that, as explained in Doepke et al (2023)., rising
females wages is at the root of the global fertility decline threatening economic growth,
the automation of childcare could be the solution to the “empty planet” problem. By
potentially reversing the negative effect of rising female wages on fertility to a positive
one, automation turns an economic concern into a source of economic growth, while
simultaneously promoting gender equality.

The main policy implication of (2) being that lawmakers should move beyond traditional
family policies such as tax credits or parental leave, and recognize the role that household
technology can play in supporting fertility. Encouraging innovation in affordable childcare
automation, reducing regulatory barriers, and disparities in access are key policy measures
that could enhance the demographic and economic benefits of technological progress.

However, the deliberately theoretical nature of this paper implies that demonstrating that
childcare automation would reverse current fertility trends hinges on empirically validating
the plausibility of conditions required for the model’s predictions to hold. Until such evidence
is available, the policy implications outlined above should be viewed as exploratory rather
than actionable.

In closing, this dissertation highlights an underexplored but potentially transformative link
between automation, fertility, and growth. As advanced economies grapple with the twin
challenges of demographic decline and technological disruption, understanding how these
forces interact will be central to designing policies that promote both economic dynamism and
social resilience.
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Appendices

A.1. Summary of Model Setup

Growth Dynamics

Final Good Production:

Y = A, Ly,
Idea Production:
A
A—: = 2L, A"
Population Dynamics:
Lyt
— = Le=Lp¢+ Ly,
Ly, '
Population Growth:
Ly 7
L; B 2n;

Automation Boundary
. N
NA,L’ = A?—n (1 — —A?\'It> (1 — eK(Acrit_At))

Household Childbearing Decisions

Utility Function:
u(c,n) = log(c) + 6log(n)

Time and Budget Constraints:
Ae=1=n (N =Nyt) 5 wihe = co+npNy,

Maximisation Problem:
max: log(c,) + 8logn,) s.t. w(l—n,(N—N,.)p)=c; +nNyp

Ce,Ng

Closed-Form Fertility Solution:
) w

T 1+06 wop(N —Nyp) + YN,

ng
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A.2. Fertility Solution Derivation

We start from the utility maximisation problem:
max: log(c,) + 8log(n,) s.t. w(1—n,(N—Ny,)p)=c, +n;Ny b

CeMt

Isolate c;:
w(1—n.(N - NA,t)¢) =c+tnlNyp & o= w(1—n,(N - NA,t)¢) — NNy h

Substitute into the objective function:
max: log(w(1 —n,(N = Ny )op) — nNy ) + 8 log(n,)
t

Define: C(n,) = w(1 —n. (N — NA,t)qb) — NNy P

Differentiate with respect to n, and set the F.O.C.
—a —w(N —N ¢ — N ll) Y
an [log(C(ny)) + 8log(n,)] = ( ac) e
t

—— =0
C(n.) n;

Solving for n,:
~w(N — Ny )p — Ny o) _ 8

C(ny) n,
> (-w(N - NA,t)¢ - NA,tlp)nt = —6C(ng)

= (_W(N - NA,t)¢ - NA,tlp)nt = _5[W(1 - nt(N - NA,t)¢) - ntNA,tl/J]

Expand and group by n; terms:
= [-w(N =Ny )¢ — Nagip — Sw(N — Ny )p — SNy ] np = —6w

Isolate n;:
ow

e (1+6) [W¢(N - NA,t) + ¢NA,t]

Rearrange for the final solution:

_ 0 w
146 W¢(N - NA,t) + YNy

ng
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A.3. Engaging With Doepke et al. (2023) Derivation

Recall:
6 Wy, + Wy

T1+6 Ny b + (N~ NA,t)Wf¢

ng

and
an; _ 6 _ Nyp — (N - NA,t)Wm¢
owr 146 [NA,H/’ +(N - NA,t)Wf¢]2

We take the cross-partial derivative of n, with respect to wy and Ny ;:

?n, & @+ Win®)[Nacth + (N = Nae)wpd]” = [Naeth = (N = Nat)wimd] - 2[Nact + (N = Nae)wp ] (3 — wyr ) >0
anaNA,t 1+ é [NA,tlp + (N - NA't)Wfd)]‘l-

= () + W d)[Nap + (N — NA,t)Wffl)]z ~ [Naep = (N = Ny Jwim] - 2[ Nyt + (N = Ny o Jwr ] (9 — wye )
= @+ W) [Ny + (N = Ny )wrd] > 2[Npop = (N = Ny o )W (¥ — wyr9)
Which holds under the conditions:
Y>wrp and  wy, = wy

In that case, the following is assured:

9%n,

—>0
anaNA't
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A.4. Simulation Scripts

All scripts can be accessed by clicking the GitHub button to access the script online.

Evolution of the Automation Boundary N4, O

Figure 2

The simulation script was coded on Python when I was designing
the automation boundary function (around Jan 2025), as a way to test that it behaved as
expected.

Fertility Solution ( n,) Comparative Statics

All coded during the writing process of the dissertation (around April 2025) to serve as
illustrations of the comparative statics analysis of fertility solution equation (14). I switched
from Python to R code for higher code efficiency.

There is one script per parameter/variable studied. Each script defines n, as a function of the
studied parameter/variable and - ceteris paribus - computes the values for both n, and its
partial differential with respect to the studied parameter/variable. Different outputs are
obtained by changing the parameter settings at the start of each script.

e Childrearing Preference §: O
Figure 3
e Avg. Time Cost of Tasks ¢: O

Figures 4 and 5

e Avg. Monetary Cost of Tasks : O

Figures 6 and 7

e Wages w:
Figures 8,9, and 10

e Automation Ny ;: O
Figures 11, 12, and 13

Engaging with Doepke et al. (2023) O

Figure 14

The script simulates the behaviour of the partial derivative of n;
with respect to wy as a function of Ny,
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https://github.com/maxdlpt/EC331/blob/main/DissertationScripts/sim_n(psi).R
https://github.com/maxdlpt/EC331/blob/main/DissertationScripts/sim_n(w).R
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