
 
 
 

 
 

 
 

 
 
 

 
 

 

 
 
 

University of Warwick 
Research in Applied Economics 

 
Maximilien Delaporte 

u2126980 
8th of May 2025 

 
 

Word Count: 4,9961 
 
 

 

 
  

                                                   
1 Including:  Main Body, Footnotes, Headings, Subheadings, and Equations (5 words per line) 
  Excluding: Title Page, Abstract, Acknowledgements, Table of Contents, In-Text References, Tables & Figures, Appendix, and Bibliography 



  (2126980) 

2      
 

0 

 

 
 

 

Nannies, Machines, and Population Growth: 
How Could the Automation of Childcare 

Affect Economic Growth?  
 

 

Abstract 

This dissertation investigates the potential for artificial intelligence (AI) to impact 

long-run economic growth through its effect on fertility. While recent Semi-
Endogenous Growth (SEG) frameworks have explored AI-driven automation in 

production and idea creation, little attention has yet been given to how automation 
may alter household decisions by automating parenting tasks. We develop a task-

based Semi-Endogenous Growth model in which fertility is endogenously 
determined and influenced by the level of AI-driven automation in childcare. The 
model integrates insights from Zeira (1998), Doepke et al. (2023), and Jones (2022), 

allowing automation to alter the cost distribution of childrearing and impact 
household fertility decisions. 

 
A closed-form solution for fertility is derived under time and budget constraints. 

Preliminary results suggest that automation could significantly raise fertility in 
certain settings, providing a novel pathway through which policy can aim to 
mitigate the global decline in fertility. 

 
This framework offers a new theoretical channel for understanding automation’s 

role in sustaining growth and suggests that household-level automation has the 
potential to become an increasingly relevant component of demographic policy 
discussions. 
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1.   Introduction 
 

Research Motivation, Question, and Contribution 
 

Modern growth theory sees long-run economic growth as fundamentally reliant on the 
continuous production of new technologies2, which increase the productivity of workers.  
Within the Semi-Endogenous Growth (SEG) framework specifically, new technologies become 

harder and harder to find as the economy’s technological level increases. 
 

Population growth then becomes a crucial component of long-run economic growth as it 
provides a way to mitigate the decreasing returns to innovation by supplying more idea-
generating agents.  Jones (2022) implies that (currently) population growth is our only source 

of long-term economic growth, despite accounting only for roughly 20% of observed economic 
growth of the past +50 years.3   

 
Concerningly, however, global fertility rates have been falling steadily; the UN’s projections 

(which we plot on Figure 1) now predict that global population will peak around 10.3 Billion 
in the mid-2080s (United Nations, 2024), posing a significant structural threat to the only long-
term driver of economic growth, according to SEG theory.4 

 
 

 
 

 
 
 

 
 

 
 

 
 
 

 
 

 
 
 

 
 

 
 

 

                                                   
2 Also referred to as ideas, knowledge, or innovation. 
3 He explains the remaining 80% as ephemeral level effects; bound to gradually stop driving global economic 
growth.  
4 As illustrated in Jones (2020, 2022) with the situation dubbed ‘the empty planet scenario’ – where the fall of 
population growth leads to stagnating knowledge and living standards for a population that vanishes.  

Figure 1: UN Population Growth Estimations and Projections (1950-2100) 

Source: United Nations (2024) 
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Doepke et al. (2023) propose a model for endogenous fertility which explains its gradual 
decrease as resulting from two main underlying trends:  
 

(1) Higher female wages which, in turn, increase the relative time opportunity-cost of 
childrearing, making it a less attractive option. 

(2) A decreasing societal preference for large families, possibly influenced by Malthusian fears 
of overpopulation. 

 
Turning to a seemingly different but closely related matter, technological change – specifically 
the advent of general-purpose artificial intelligence (AI) – is reshaping sectors traditionally 

resilient to automation, including caregiving and education. Evidence from Japan’s 
deployment of robotic eldercare analysed by Broadbent et al. (2009), the efficiency of AI-

assisted learning platforms evaluated by Luo and Hsiao-chin (2023) – even the emergence of 
the satirical term ‘iPad Kid’5 – all signals point to technology playing an increasingly important 

role in childrearing. This shift, emphasized by the development of AI, suggests that 
automation – a biproduct of technological advancement – could increasingly substitute for 
parenting labour, potentially impacting fertility rates by altering household dynamics.  

 
Yet, no existing economic framework explicitly connects technological change to household-

level fertility choices, signalling an overlooked channel which this paper will focus on by 
addressing the following research question:  

 
Given the new implications of AI for automation, how might applying it to childcare affect the household 
fertility dynamics that govern long-run economic growth? Could the automation of childcare help 
mitigate the causes of Jones’ (2020) empty planet scenario? 
 

To answer this, we develop a theoretical framework rooted in the SEG setting, where fertility 
is endogenized as the outcome of a utility maximisation problem à la Doepke et al. (2023). 

Households balance the consumption of goods and the number of children under both time 
and budget constraints. We structure the cost of childrearing using a task-based approach 

inspired by Zeira (1998), which enables its gradual automation. 
 
A key innovation of the model is the introduction of an automation boundary, which 

represents the level of childcare automation, endogenously determined by the economy's 
technological level. As the level of technology is raised, the automation boundary expands, 

progressively reducing the time burden of childrearing and influencing household fertility 
choices. 

 
By creating a link between the endogenous creation of technology from Jones’ (2022) SEG 
framework to the level of childrearing automation, the model offers a novel mechanism, 

circularly linking technological progress to the demographic outcomes that govern it. In so 
doing, it contributes not only to the literature on automation and economic growth but also to 

the broader question of how technology might fundamentally alter the demographic  
foundations of idea production, labour supply, and long-run economic growth. 

 
 

                                                   
5 Coined in popular culture to describe children given excessive and arguably harmful screen time for parental 
convenience (Parents, 2024). 
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2. Literature Review 
 
This section reviews the strands of literature that inform the construction of the dissertation’s 

theoretical model. It is divided into three parts: the SEG framework and its relationship to 
population, the integration of AI-driven automation within economic growth models, and 

recent attempts to link AI with fertility dynamics. Throughout, we highlight key contributions 
and identify where existing models leave space for the innovation proposed in this 

dissertation. 
 

2.1. Semi-Endogenous Growth, Population, and AI Automation 
 
The SEG framework, formalized by Jones (1995, 2022), asserts that sustained long-run growth 
requires ongoing idea production, which faces diminishing returns over time. Population 

growth is critical in this framework, as it supplies the increasing number of researchers 
necessary to counteract these decreasing returns. However, declining fertility rates globally 

(United Nations, 2024) threaten this mechanism, creating a vulnerability in traditional SEG 
models. 
 

Attempts to address this vulnerability have incorporated AI-driven automation into SEG 
settings. Aghion et al. (2019) propose that AI could replace human labour not only in final 

goods production but also in idea creation, mitigating the reliance on population growth. 
However, their model introduces a significant limitation: under plausible parameter values, it 

predicts singularities where output grows infinitely in finite time, an empirically and 
theoretically unrealistic result. Jones (2022) notes this flaw and suggests that although AI may 
substitute for human inputs, its effects on demographic dynamics remain underexplored. 

 
A related contribution by Gries and Naudé (2020) circumvents the singularity issue by treating 

idea creation as exogenous and focusing instead on endogenous technology adoption. While 
their approach stabilizes the growth path, it decouples population size from innovation, 

limiting its applicability for models concerned with demographic feedbacks. Thus, while AI ’s 
potential to sustain growth has been recognized, the interaction between AI-driven 
automation and fertility decisions remains largely absent from the current SEG literature. 

 

2.2. Task-Based Models of Automation and Household Dynamics 
 

The task-based approach to modelling automation, originating with Zeira (1998) and 
expanded by Acemoglu and Restrepo (2018), emphasizes heterogeneity in automation's 

impact across sectors and tasks. Zeira's partial equilibrium model introduced the concept of 
automation displacing labour in task-specific ways, while Acemoglu and Restrepo generalized 
this into a dynamic, general equilibrium setting that integrates new task creation alongside 

displacement. An automation frontier separates tasks performed by capital from those 
performed by labour, based on a cost cutoff. Although these frameworks richly capture 

market‑sector dynamics, they have not been applied to childcare. 
 

Critically, Acemoglu and Restrepo’s frontier advances when high wages make automation 
profitable, so population growth - which tends to depress wages - reduces the incentive to 
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automate, opposite to semi‑endogenous‑growth logic where more people → more researchers 
→ faster innovation. 
 

By contrast, household adoption of AI childcare tools hinges on technological capability 
(speech‑recognition accuracy, safety standards) rather than parental wages. This motivates our 

use of a tech‑pushed automation boundary: growing purely as a function of technology, 
featuring an explicit capability threshold 𝐴crit, and capping out at a ceiling 𝛥𝑁 of automatable 

tasks. Transposing and adapting the task‑frontier concept in this way captures the direct link 
between tech-readiness and a reduced time costs of parenting - an essential channel for the 
fertility feedback we want our model to capture. 

 
Incorporating these insights into growth models has enhanced the realism of automation 

effects on labour markets and aggregate output. However, existing applications of task-based 
automation – including those in Aghion et al. (2019) and Jones (2022) – largely focus on 

production and idea creation sectors. Little attention has been paid to how task automation 
could penetrate non-market sectors such as household labour, specifically parenting tasks that 
heavily influence fertility decisions. 

 
This omission is significant. The same mechanisms that make non-routine cognitive tasks 

automatable in production settings suggest that parts of childcare and early education could 
similarly be automated (Broadbent et al., 2009; Luo and Hsiao-chin, 2023). Current growth 

models thus overlook a potentially important channel through which AI can indirectly but 
materially alter macroeconomic outcomes by affecting household-level decision-making. 
 

2.3. AI and Fertility: Indirect and Direct Mechanisms 
 
The sparse literature on AI and fertility generally treats AI’s influence as operating through 

labour market adjustments. Wei and Xie (2022) model AI-induced changes in wages and 
working hours as affecting fertility indirectly by altering the opportunity cost of childbearing. 

While valuable, this approach assumes that AI does not alter the production function of raising 
children itself, only the broader economic environment in which fertility decisions are made.  
 

By contrast, the model proposed in this dissertation explores a direct channel: AI-driven 
automation of childcare tasks reduces the time and financial costs of childrearing, modifying 

the household utility-maximization problem at its core. This represents a substantive 
departure from existing frameworks, which generally treat the time and cost parameters in 

fertility models as technologically static (Doepke et al., 2023). 
 
Thus, while current models recognize AI's transformative economic potential, they 

underestimate its ability to alter demographic foundations directly. Addressing this gap by 
endogenizing task automation within the fertility decision is essential to understanding the 

full macroeconomic consequences of recent technological breakthroughs. 
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3. The Model 
 

3.1. Overview and Intuition 
 
The intuition of the model is as follows: the level of technology 𝐴𝑡 (set by the 
SEG model) sets the level of childcare automation 𝑁𝐴,𝑡. This in turn 

determines how many childrearing tasks incur a monetary 𝜓 (automated) 

rather than a time 𝜙  (performed by parents) cost. The distribution of these 
costs directly impact households’ fertility choice 𝑛, which drives the 

population growth needed for technological development, and thereby 
economic growth. A summary of the model’s setup equations is available in 

Appendix (A.2.) 
 

3.2. Growth Dynamics 
 

The production side of the economy follows Jones’ (2022) standard SEG model, composed of 
two production sectors: final goods and ideas. 

 
Final Good Output 𝒀𝒕 is produced according to the following Cobb-Douglas function: 

 

𝒀𝒕 = 𝑨𝒕

𝝈𝒚
𝑳𝒀,𝒕 (𝟏) 

 
Where 𝑨𝒕 represents the stock of ideas (or level of technology) at time 𝑡, 𝑳𝒀,𝒕 is the amount of 

labour allocated to final good production, and 𝝈𝒚 is the elasticity of output with respect to the 

stock of knowledge. 

 

The growth rate of technology 𝑨𝒕
̇ /𝑨𝒕

6 is determined by equation (2) in which 𝒛 represents the 
productivity of researchers, 𝑳𝑨,𝒕 is the number of researchers in the economy, and 𝜷 > 0 

captures the decreasing returns to technological advancement.  
 

𝑨𝒕
̇

𝑨𝒕

= 𝒛𝑳𝑨,𝒕𝑨𝒕
−𝜷 (𝟐) 

 

As 𝐴𝑡 grows, idea production becomes increasingly difficult, necessitating a larger research 
workforce to sustain the same rate of technological growth. 
 

3.3. Population Dynamics 
 
The economy’s total workforce 𝑳𝒕 is exogenously split between production and research by 

parameter 𝒍 ∈ [0,1]: 
 

𝑳𝒕 = 𝑳𝑨,𝒕 + 𝑳𝒀,𝒕              
𝑳𝑨,𝒕

𝑳𝒀,𝒕

= 𝒍 (𝟑, 𝟒) 

 

                                                   
6 Where the dot notation 𝐴𝑡

̇  denotes the time derivative of 𝐴𝑡. 

𝑁𝐴,𝑡

𝜙, 𝜓

𝑛𝑡

𝐿𝐴

𝐴𝑡

𝑌𝑡  
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While population growth is determined endogenously through household fertility decisions. 

Specifically, the growth rate of the total workforce 𝑳𝒕̇/𝑳𝒕 during period 𝑡 is given by: 
𝑳̇𝒕

𝑳𝒕
= 𝒏𝒕 − 𝒎 (𝟓) 

 
Where 𝒎 represents an exogenous per-household mortality rate parameter and 𝒏𝒕 denotes the 

economy’s number of children per household at time 𝑡, endogenously determined by a 
household-level utility maximisation problem (section 3.5.). Essentially, equation (5) serves as 
the link which ties the outcome of our fertility decision model (𝑛𝑡) to population growth within 

the SEG model. 
 

3.4. Automation of Childcare 
 
Before setting the household’s maximisation problem, we define the mechanism through 

which the technological output of the economy 𝐴𝑡̇ can influence fertility decisions by 
increasing the automation of childcare as the economy’s technology level 𝐴𝑡  rises. This is the 

principal contribution of this model to the literature, as it creates a novel link between macro-
economic outcomes (in this case technological growth) and demographic tendencies. It does 
so through the creation of the automation boundary 𝑵𝑨,𝒕 – endogenously determined as a 

function of 𝐴𝑡 – which represents the level of childcare automation. 

 
Drawing from the task-based approach (Zeira 1998, Acemoglu and Restrepo 2018), our model 

sees childrearing as a collection of parenting tasks. Each period, parents must complete an 
exogenous number 𝑵 of tasks per child in their household. The per-period effort 𝑬𝒕 required 

to raise a child  is therefore given by equation (6), where 𝑿 represents the cost of task 𝑖 ∈ [1, 𝑁]. 
 

𝐸𝑡 = ∑ 𝑋𝑖,𝑡

𝑁

𝑖=1

(7) 

 

When a task becomes automated it goes from incurring a time cost 𝝓 to a monetary cost 𝝍 such 
that:  

                                    𝑿𝒊,𝒕 =  {
𝒘𝝓   if  𝒊 ∈ (𝑵𝑨,𝒕, 𝑵]          (manual task)

𝝍      if  𝒊 ∈ [𝟏, 𝑵𝑨,𝒕]    (Automated task)
(8) 

 
Equation (7) can then be rewritten as:  

 

𝐸𝑡 = ∑ 𝜓

𝑁𝐴,𝑡

𝑖=1

+ ∑ 𝑤𝜙

𝑁

𝑖=𝑁𝐴,𝑡+1

= 𝜓𝑁𝐴,𝑡 + 𝑤𝜙(𝑁 − 𝑁𝐴,𝑡) (9) 

 
Childrearing efforts are then endogenously split between time and monetary costs according 
to the automation boundary 𝑁𝐴,𝑡, whose laws of motion are defined by the following equation, 

inspired by Acemoglu and Restrepo’s “automation frontier”, but developed as an original 

contribution of this model: 
 

𝑵̇𝑨,𝒕 = 𝑨𝒕
𝝈𝒏 (𝟏 −

𝑵𝑨,𝒕

𝚫𝐍
) (𝟏 − 𝒆𝜿(𝑨crit−𝑨𝒕)) (𝟔) 
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Each period, the amount of newly automated tasks 𝑁̇𝐴,𝑡 is determined by three factors, each 

representing an underlying assumption of how our model sees the potential automation of 
childcare: 

 

 𝑨𝒕
𝝈𝒏 : The level of automation of childcare tasks depends on the economy’s technology 

level (raised to an elasticity parameter 𝝈𝒏). 𝐴𝑡 is the only endogenous determinant of 

𝑁𝐴,𝑡. 

 

 (𝟏 −
𝑵𝑨,𝒕

𝚫𝑵
): Some childrearing tasks cannot be automated. Certain aspects of parenting – 

such as emotional bonding, moral guidance, or unstructured play - are inherently 

resistant to automation. Regardless of how advanced technology becomes, certain tasks 
will always remain a parent’s responsibility.  
The model therefore imposes a ceiling on childcare automation by scaling the increase 

in 𝑁𝐴,𝑡 by 1 −
𝑁𝐴,𝑡

ΔN
, where parameter 𝚫 ∈ [0,1) represents the maximum portion of tasks 

that can be automated. As 𝑁𝐴,𝑡 approaches 𝛥𝑁, automation gradually slows down to a 

stop. 
 

 (𝟏 − 𝒆𝜿(𝑨crit−𝑨𝒕)): The automation of childcare can only begin once the economy 

surpasses an exogenously determined technology level 𝑨crit. The underlying 
assumption here is that a significant level of technology must be reached before 

automation reaches the childcare sector.  

This mechanic is modelled through the exponential smoothing term 1 − 𝑒𝜅(𝐴crit−𝐴𝑡), 
where the 𝜿 parameter controls how gradually automation ramps up once 𝐴𝑡 exceeds 

𝐴crit.  
 

These dynamics are simulated and illustrated in Section 4.1 (Figure 2) 
 

 

3.5. Household Childbearing Decisions 
 
As previously outlined (Section 3.3., Equation 5), our model’s population growth rate is 

obtained by subtracting the exogenous mortality rate 𝑚 from the per-household fertility rate 
𝑛𝑡 . This formulation enables population growth to depend on the number of children per 

household 𝑛𝑡, endogenously determined by a household utility maximisation framework à la 
Doepke et al. (2023). To close our model, we will incorporate our Zeira (1998) inspired 

automation dynamics, whereby technological progress influences the cost distribution of our 
household utility maximization problem, thus inter-linking technological progress, 
automation, population dynamics, and economic growth. 

 

3.5.1. Household Preferences 

As in Doepke et al. (2023), households derive utility from both consumption 𝒄 and number of 

children 𝒏. Preferences are represented by a separable log-utility function:  
 

𝑢(𝑐, 𝑛) = log(𝑐) + 𝛿 log(𝑛) (10) 
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Where 𝜹 > 0 captures the relative importance of fertility compared to consumption. 
Households face both time and financial constraints when deciding how many children to 
have. Crucially, the model allows for technological progress to reduce these costs via 

automation of childcare tasks. 
 

3.5.2. Time and Budget Constraints 

Both agents of the household spend all their time either working or performing childrearing 
tasks. The time portion 𝝀𝒕 of period 𝑡 that the household spends working is therefore equal to 
1 minus the time spent taking care of its children: 

 

𝜆𝑡 = 1 − 𝑛𝑡𝜙(𝑁 − 𝑁𝐴,𝑡) (11) 

 

If the household has no children, it will spend all of period 𝑡 working which will yield wage 
𝒘. For simplicity, we assume households do not either save or invest. The capital they earn 

during period 𝑡 is entirely spent either on their children or on consumption.  
 

𝑤𝜆𝑡 = 𝑐𝑡 + 𝑛𝑡𝜓𝑁𝐴,𝑡 (12) 
 

3.5.3. Solving for 𝒏𝒕 

We substitute (11) into (12) and set up the household’s utility maximisation problem: 
 

𝐦𝐚𝐱: 
𝒄𝒕,𝒏𝒕

𝐥𝐨𝐠(𝒄𝒕) + 𝜹 𝐥𝐨𝐠(𝒏𝒕)      𝒔. 𝒕.    𝒘(𝟏 − 𝒏𝒕(𝑵 − 𝑵𝑨,𝒕)𝝓) = 𝒄𝒕 + 𝒏𝒕𝑵𝑨,𝒕𝝍 (𝟏𝟑) 

 
By substituting the budget constraint into the objective function and taking the first-order 

condition, we solve for a closed-form solution for optimal fertility (Appendix A.2.). 
 

𝒏𝒕 =
𝜹

𝟏 + 𝜹
∙

𝒘

𝒘𝝓(𝑵 − 𝑵𝑨,𝒕) + 𝝍𝑵𝑨,𝒕

(𝟏𝟒) 

 

 

3.6. Balanced Growth Path (BGP) 
 

The BGP is a situation in which the model’s major variables all grow at constant rates. To find 
an expression for those rates, we first calculate the growth rate 𝒈𝒚 of output per capita 𝒚. 

 

𝑦𝑡 =
𝑌𝑡

𝐿𝑡

=
𝐴𝑡

𝜎𝑦
𝐿𝑌,𝑡

𝐿𝑡

(15) 

Recalling equations (3) and (4): 
 

𝐿𝑌,𝑡 = (1 − 𝑙)𝐿𝑡      ⇒      𝑦𝑡 = 𝐴𝑡

𝜎𝑦(1 − 𝑙) (16) 

 
Which yields:  
 

𝑔𝑦 = 𝜎𝑦𝑔𝐴 (17) 
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3.6.1. Long-Run Technological Growth (𝒈𝑨) 

Recalling the technological growth equation (2) as well as equations (3) and (4), 
𝐴̇𝑡

𝐴𝑡
 can be 

expressed as: 

 

𝐴̇𝑡

𝐴𝑡

= 𝑧𝑙𝐿𝑡𝐴𝑡
−𝛽 (18) 

 
Which, along the BGP, yields the (constant) technological growth rate 𝒈𝑨.  

 

𝑔𝐴 =
𝑔𝐿

𝛽
(19) 

 

3.6.2. Long-Run Population Growth (𝒈𝑳) 

Recalling equations (10) and (12) we know that – as a function of 𝐴𝑡 – 𝑁𝐴,𝑡 converges either to 

zero (if 𝐴𝑡 < 𝐴crit) or to its saturation point Δ𝑁. Therefore, along the BGP, 𝑛𝑡 converges to: 

 

𝑛∗ =
𝛿

1 + 𝛿
∙

𝑤

𝑤𝜙(𝑁 − Δ𝑁) + 𝜓Δ𝑁
(20) 

 

The population growth rate along the BGP is therefore given by: 
 

𝑔𝐿 = 𝑛∗ − 𝑚 (21) 
 

3.6.3. Long-Run Output Growth (𝒈𝒚) 

Substituting (19) and (21) into (17) gives us the constant growth rate of output 𝑔𝑦 along the 

BGP: 

𝑔𝑦 = 𝜎𝑦

𝑛∗ − 𝑚

𝛽
(22) 

 
In keeping with standard SEG theory, the long-term growth rate of output is dependent on 
fertility’s relative strength to the decreasing rate of idea production 𝛽. The nuance our model 

brings, however, is that it treats population growth as an endogenous variable – rather than a 
constant rate – whose level depends on a multitude of underlying assumptions about 

automation’s potential, in light of the new implications that AI has brought to the debate. 
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4. Quantitative Analysis 
 

4.1. Simulated Dynamics of 𝑵𝑨,𝒕 
 

As discussed in section 4.4., the automation boundary is endogenously determined as a 
function of 𝐴𝑡 (Equation 9). To better illustrate the dynamics of our novel automation 

boundary, we run a simulation7 where we plot the evolution of 𝑁𝐴,𝑡 in function of 𝐴𝑡, ceteris 

paribus.  
 
 

Figure 2 above shows the output of that simulation, from which we observe that plotting 𝑁𝐴,𝑡 

against 𝐴𝑡 yields a sigmoidal8, or s-shaped, curve which only departs from 0 once 𝐴𝑡 ≥ 𝐴crit. 
Inputting different values for 𝜅 in the algorithm will change the rate at which childrearing 
tasks are replaced by automation (slope of the red line on Figure 2). Changing 𝐴crit changes 

where along the x axis 𝑁𝐴,𝑡 starts accumulating, and changing Δ sets the upper bound for our 

automation boundary 𝑁𝐴,𝑡.  

  

                                                   
7 The code scripts for all simulations are included in Appendix (A.4.) 
8 But not logistic since the acceleration and slowdown of 𝑁𝐴,𝑡 in function of 𝐴𝑡 is controlled by 2 different terms, 
allowing them to be asymmetric. 

Figure 2: Automation Boundary 𝑵𝑨,𝒕 in Function of Technology Level 𝑨𝒕 
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4.2. 𝒏𝒕 Comparative Statics 
 
We recall the fertility solution (Equation 14), run comparative statics analysis on it, and 

conduct ceteris paribus simulations to analyse the behaviour of our fertility rate over changes 
in all its determining factors. 

 

𝑛𝑡 =
𝛿

1 + 𝛿
∙

𝑤

𝑤𝜙(𝑁 − 𝑁𝐴,𝑡) + 𝜓𝑁𝐴,𝑡

(23) 

 
 

4.2.1. Preference for Childrearing (𝜹) 

 
𝜕𝑛𝑡

𝜕𝛿
=

1

(1 + 𝛿)2
∙

𝑤

𝑤𝜙(𝑁 − 𝑁𝐴,𝑡) + 𝜓𝑁𝐴,𝑡

(24) 

 

⇒
𝜕𝑛𝑡

𝜕𝛿
> 0 (25) 

 
As in Doepke et al. (2023), an increase in households’ preference for childrearing, ceteris 
paribus, unambiguously results in an increase in the fertility rate. The slope at which it 

increases is shown in the plotted simulation on Figure 3. 
 

 
 

 
 
 

 
 

 
 
 

 
 

 
 

 
 

4.2.2. Average Time-Cost of Childrearing Tasks (𝝓) 

 

𝜕𝑛𝑡

𝜕𝜙
=

𝛿

1 + 𝛿
∙

𝑤2(𝑁 − 𝑁𝐴,𝑡)

[𝑤𝜙(𝑁 − 𝑁𝐴,𝑡) + 𝜓𝑁𝐴,𝑡]
2 (26) 

 

⇒
𝜕𝑛𝑡

𝜕𝜙
  is  {

< 0  if:   𝑁𝐴,𝑡 < 𝑁

= 0  if:   𝑁𝐴,𝑡 = 𝑁
 (27) 

Figure 3: Plotted Simulation of  𝑛𝑡  over 𝛿 
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Equations (26) and (27) show that as the average time-cost 𝜙 rises, fertility 𝑛𝑡  declines 
whenever 𝑁𝐴,𝑡 < 𝑁, with the effect disappearing when automation is complete (𝑁𝐴,𝑡 = 𝑁). The 

magnitude of 𝜙’s impact decreases gradually as 𝑁𝐴,𝑡 approaches 𝑁, meaning the sensitivity is 

proportional to the share of unautomated tasks. The simulations below (Figures 4 and 5) 
illustrate these dynamics.  

 
 

 
 

 
 
 

 
 

 
 

 
 
 

 
 

 

4.2.3. Average Monetary Cost of Automated Tasks (𝝍) 

 
𝜕𝑛𝑡

𝜕𝜓
=

𝛿

1 + 𝛿
∙

𝑤𝑁𝐴,𝑡

[𝑤𝜙(𝑁 − 𝑁𝐴,𝑡) + 𝜓𝑁𝐴,𝑡]
2 (28) 

 

⇒
𝜕𝑛𝑡

𝜕𝜓
  is  {

< 0  if:   𝑁𝐴,𝑡 > 0

= 0  if:   𝑁𝐴,𝑡 = 0
 (29) 

 

Similarly to 𝜙, raising 𝜓 unambiguously lowers the fertility rate 𝑛𝑡. However, the magnitude 
of this effect is inversely scaled to 𝜙: as the number of automated tasks increase, the effect of 

raising 𝜙 on fertility diminishes while that of raising 𝜓 increase – as shown in Figures 6 and 7. 
 

  
 
 

 
 

 
 

 
 
 

 
 

 
 
 

Figure 4: Plotted Simulation of  𝑛𝑡  over 𝜙 (𝑁𝐴,𝑡 = 0)   

Figure 5: Plotted Simulation of  𝑛𝑡  over 𝜙 (𝑁𝐴,𝑡 = 𝑁)   

Figure 6: Plotted Simulation of  𝑛𝑡  over   𝜓 (𝑁𝐴,𝑡 = 0)   

Figure 7: Plotted Simulation of  𝑛𝑡  over  𝜓 (𝑁𝐴,𝑡 = 𝑁)   
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4.2.4. Wages (𝒘) 

 
𝜕𝑛𝑡

𝜕𝑤
=

𝛿

1 + 𝛿
∙

𝜓𝑁𝐴,𝑡

[𝑤𝜙(𝑁 − 𝑁𝐴,𝑡) + 𝜓𝑁𝐴,𝑡]
2

(30) 

 

⇒
𝜕𝑛𝑡

𝜕𝑤
  is  {

> 0  if:   𝜓𝑁𝐴,𝑡 > 0

= 0  if:      𝑁𝐴,𝑡 = 0
 (31) 

 

Equations (30) and (31) show that as the wages increase, fertility rises proportionally to the 
level of 𝑁𝐴,𝑡, with no effect when automation is absent (𝑁𝐴,𝑡 = 0). As long as 𝑁𝐴,𝑡 ≠ 𝑁, the model 

exhibits decreasing returns to wage increases, and 𝑛𝑡 converges to a constant as 𝑤 → +∞, since 

the unautomated tasks impose a hard ceiling on fertility gains. By contrast, if full automation 
is achieved (𝑁𝐴,𝑡 = 𝑁), fertility increases linearly with 𝑤. Since that situation implies there are 

no unautomated childcare tasks, the time cost of childrearing is null and household fertility 

choices become solely dependent on how many children a household can afford. The 
simulations below (Figures 8, 9, and 10) illustrate these dynamics. 
 

 
 

 
  

 
 
 

 
 

 
 

 
 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 11: Plotted Simulation of  𝑛𝑡 over  𝑤 ; (𝑁𝐴,𝑡 = 𝑁) 
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4.2.5. Automation (𝑵𝑨,𝒕)  

 
𝜕𝑛𝑡

𝜕𝑁𝐴,𝑡
=

𝛿

1 + 𝛿
∙

𝑤(−𝑤𝜙 + 𝜓)

[𝑤𝜙(𝑁 − 𝑁𝐴,𝑡) + 𝜓𝑁𝐴,𝑡]
2 (32) 

 
Equation (32) is a pivotal takeaway from our model’s setup because it implies that the impact 

of automation on fertility relies on the cost of automating tasks 𝜓 relative to the wage adjusted 
time-cost 𝑤𝜙 of those same tasks if they are performed manually: 

 

𝜕𝑛𝑡

𝜕𝑁𝐴,𝑡

  is  {
> 0  if:   𝑤𝜙 < 𝜓
= 0  if:   𝑤𝜙 = 𝜓
< 0  if:   𝑤𝜙 > 𝜓

(33) 

 

Essentially, if the wage-adjusted time cost 𝑤𝜙 exceeds the monetary cost 𝜓 of automation, 
expanding the automation boundary 𝑁𝐴,𝑡 reduces the overall cost of childrearing and increases 

fertility (Figure 11). Conversely, if automation is relatively expensive (𝑤𝜙 < 𝜓), then further 
automation may lower fertility by raising household childcare costs (Figure 13). If both costs 

are equal, then automation has no impact on fertility at all (Figure 12). 
 

  Figure 11: Plotted Simulation of  𝑛𝑡  over  𝑁𝐴,𝑡 ; ( 𝑤𝜙 > 𝜓) 

Figure 12: Plotted Simulation of  𝑛𝑡  over  𝑁𝐴,𝑡 ; ( 𝑤𝜙 = 𝜓) 

Figure 13: Plotted Simulation of  𝑛𝑡  over  𝑁𝐴,𝑡 ; ( 𝑤𝜙 < 𝜓) 
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5. Model Discussion 

5.1. Engaging with Deopke et al. (2023) 
 
In Doepke et al. (2023),9 the fall in fertility is partly explained as resulting from an increase in 

female wages. This is achieved by setting up the model with heterogeneous female and male 
wages 𝑤𝑓  < 𝑤𝑚. Since women earn a lower wage, they are assumed to perform all childrearing 

tasks and use whatever time left to work, while men work full time. This results in the 
following solution to the household’s utility maximisation problem: 

 

𝑛 =
𝛿

1 + 𝛿
∙

1

𝜙
∙ [1 +

𝑤𝑚

𝑤𝑓
] (34) 

 

where we can see intuitively that closing the gender pay gap reduces fertility while widening 
the gap raises it. This conclusion, however is based on the questionable assumption that if the 
household’s wife earns less than her husband – even marginally – she will perform all the 

household’s childrearing tasks. We recommend future research to explore a different, possibly 
more nuanced setup in which childrearing tasks are exogenously split between husband and 

wife proportionately to the female-male wage ratio. 
 

Nonetheless, setting up our model with this assumption is both simple and pertinent, 10 
because it allows us to evaluate the conditions needed for automation to mitigate the fall of 
fertility rates. Doing so results in a fertility solution that somewhat resembles Section 4.2. of 

the Deopke et al. paper on the “Marketization of Childcare”: 
 

𝑛𝑡 =
𝛿

1 + 𝛿
∙

𝑤𝑚 + 𝑤𝑓

𝑁𝐴,𝑡𝜓 + (𝑁 − 𝑁𝐴,𝑡)𝑤𝑓𝜙
(35) 

 
Raising male wages here unambiguously raises fertility while raising the female wage has 
ambiguous effects. We take the partial differential with respect to 𝑤𝑓  and set the FOC: 

 

𝜕𝑛𝑡

𝜕𝑤𝑓
=

𝛿

1 + 𝛿
∙

𝑁𝐴,𝑡𝜓 − (𝑁 − 𝑁𝐴,𝑡)𝑤𝑚𝜙

  [𝑁𝐴,𝑡𝜓 + (𝑁 − 𝑁𝐴,𝑡)𝑤𝑓𝜙]
2

 
= 0 (36) 

 

We study how 
𝜕𝑛𝑡

𝜕𝑤𝑓
  behaves in function of 𝑁𝐴,𝑡 (Appendix A.3.) we note that under the 

conditions 𝜓 < 𝑤𝑓𝜙 and 𝑤𝑓 ≤ 𝑤𝑚 : 

 
𝜕2𝑛𝑡

𝜕𝑤𝑓𝜕𝑁𝐴,𝑡
> 0,    lim

𝑁𝐴,𝑡→0

𝜕𝑛𝑡

𝜕𝑤𝑓
=

−𝛿𝑤𝑚

(1 + 𝛿)𝑁𝑤𝑓
2𝜙

<  0,       and       lim
𝑁𝐴,𝑡→𝑁

𝜕𝑛𝑡

𝜕𝑤𝑓
=

𝛿

(1 + 𝛿)𝑁𝜓
> 0 (37) 

 
𝜕𝑛𝑡

𝜕𝑤𝑓
= 0   when   𝑁𝐴,𝑡 = 𝑁𝐴

∗ =
𝑁𝑤𝑚𝜙

𝜓 + 𝑤𝑚𝜙
(38) 

 

                                                   
9 Specifically in Section 2.4. 
10 Though not part of the original model explanation as it distracts from its main purpose. 
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With no automation, the effect of increasing female wages is negative. As automation kicks in, 
this effect becomes increasingly positive and, as the automation boundary reaches full 
automation, increasing female wages increases fertility. There then exists a critical level of 

technology 𝑁𝐴
∗ where the negative effect of increasing female wages on fertility becomes 

positive, as illustrated below (Figure 14).  

 
 

 
 
 

 
 

 
 

 
 
 

 
 

 
By that logic, in the long-term, whether or not automation can fully reverse the phenomenon 

described by Doepke et al. (2023), depends on the proportion of childrearing tasks that are 
possible to automate Δ (Equation 6) satisfying the following condition: 
 

Δ >
𝑁𝐴

∗

𝑁
     ⟹     Δ >

𝑤𝑚𝜙

𝜓 + 𝑤𝑚𝜙
(40) 

 

5.2. Limitations & Future Theory Research 
 

5.2.1. Adoption of Automation 

A core simplifying assumption of this model is that households universally and immediately 
adopt childcare automation as soon as it becomes technologically feasible. In formal terms, the 

automation boundary 𝑁𝐴,𝑡 expands smoothly as a function of the technology level 𝐴𝑡 (Equation 

6), determined by the interaction of technological progress 𝐴𝑡

𝜎𝑦
, the remaining share of 

unautomated tasks 1 − 𝑁𝐴,𝑡/Δ𝑁, and the activation term 1 −  𝑒𝜅(𝐴crit  − 𝐴𝑡) that governs when 

automation begins. This formulation fully captures the supply-side potential of automation 
but abstracts from the demand-side dynamics of household adoption. 

 
In reality, automation adoption is neither universal nor frictionless.11 Economic, social, and 
psychological factors strongly shape which households choose to adopt childcare automation 

and when. High-income households may be early adopters due to affordability; lower-income 
households may face prohibitive costs. Likewise, parents may resist automating certain tasks 

they view as emotionally or developmentally critical, regardless of the technology’s 
availability. As a result, the effective automation boundary influencing household fertility 

decisions may lag well behind the maximum 𝑁𝐴,𝑡 implied by technological progress alone. 

 

                                                   
11 As is argued by Gries and Naudé’s (2022) “human services” partial equilibrium model of automation in the 
labour market. 

Figure 14: Plotted R Simulation of  
𝜕𝑛𝑡

𝜕𝑤𝑓
 over 𝑁𝐴,𝑡 ∈ [0, 𝑁]  
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This distinction matters because the fertility solution (Equation 14) is highly sensitive to the 
distribution of childcare costs across time and money. If automation reduces the average time 
cost only partially or unevenly across households, the aggregate fertility response will be 

smaller than predicted by the current model. Put differently, the model’s positive automation–
fertility–growth linkage critically depends on widespread and affordable adoption, not just on 

technological readiness. 
 

Future iterations of this model could endogenize adoption by introducing household 
heterogeneity and adoption decisions. For example, the model could include an adoption 
probability 𝑝𝑖 , determined by household income, preferences, or cultural attitudes, and define 

the effective automation boundary 𝑁𝐸,𝑡 as 𝑁𝐸,𝑡 = ∑ 𝑁𝐴,𝑡𝑝𝑖𝑖=1 . This would allow the model to 

capture not just the supply of automation but also its diffusion, possibly yielding more realistic 
predictions. Additionally, modeling network effects – where the likelihood of adoption 

increases as more households adopt – would reflect real-world innovation diffusion patterns. 
 

In summary, the current framework likely overstates automation’s demographic impact by 
assuming immediate and uniform adoption. Relaxing this assumption could generate richer, 
policy-relevant predictions on how affordability, inequality, and social acceptance mediate the 

relationship between automation, fertility, and growth. 
 

5.2.2. Improving the link between 𝒏𝒕 and 𝑳𝒕 

As it stands, our model’s link between fertility decisions 𝑛𝑡  and total workforce is slightly 

oversimplified. Specifically, we define 𝑛𝑡 as the number of children per household at time 𝑡, 
and we link this directly to population growth (Equation 5) without explicitly modelling the 

time-lag between childbearing and entry into the workforce.  
 
This effectively treats the model period as spanning roughly one generation (≈ 18 years), which 

is reasonable considering the scope of this dissertation being focused on the long-run effects 
of technology on population growth. However, it means our current version of the model may 

be overlooking shorter-term nuances that could impact fertility. For example, a gradual 
societal shift where children take increasingly long to become financially independent would 

increase the time duration of childrearing, and therefore its burden, potentially dampening 
fertility decisions.  
 

For a more accurate representation, future research could extend our framework to improve 
the link between the household utility maximisation problem and workforce. One suggestion 

we propose as an example would be to model household optimization over childbearing rather 
than total children per household. Households would have the capacity of creating one child 

per period 𝑡, which they will have to care for over an exogenously specified duration 𝜏 before 
that child transitions into the workforce. We could then express fertility as the probability 𝑏𝑡 
that a household would choose to produce a child during period 𝑡. In that case, population 

growth becomes: 

𝐿𝑡̇

𝐿𝑡
= 𝑏𝑡−𝜏 − 𝑚   ;     𝑛𝑡 = ∑ 𝑏𝑖

𝑡

𝑖=𝑡−𝜏

(41) 

 
Households still derive utility from their number of children and consumption. However, the 

household’s budget constraint would need to be re-designed to express the costs 𝑏𝑡 as 
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spanning over 𝜏 periods rather than just one. Such an approach could allow richer exploration 
of short-term population and labour force dynamics. 

6. Conclusion & Policy Implications 
 
This dissertation has developed a novel theoretical framework to examine how the automation 

of childcare may affect the fertility decisions that drive long-run economic growth.  By re-
designing Zeira’s task-based approach and Acemoglu and Restrepo’s automation frontier to 

fit the context of parenting, it creates a new link between technology production and the 
household dynamics of fertility. It then connects household fertility decisions back into SEG 
population growth dynamics, establishing a feedback loop in which technology – under 

certain conditions – can sustain the population growth needed to maintain long-run 
innovation, and economic growth along a balanced growth path.  

 
This research offers two key contributions: 

 
(1) A novel mechanism through which technological progress can directly influence 

population growth by automating time-intensive parenting tasks and converting them 

into monetary expenditures, thereby altering fertility decisions and potentially 
establishing supporting levels of demographic expansion consistent with long-run 

economic growth. 
 

(2) A policy-relevant insight: If we believe that, as explained in Doepke et al (2023)., rising 

females wages is at the root of the global fertility decline threatening economic growth, 
the automation of childcare could be the solution to the “empty planet” problem. By 

potentially reversing the negative effect of rising female wages on fertility to a positive 
one, automation turns an economic concern into a source of economic growth, while 

simultaneously promoting gender equality.  
 
The main policy implication of (2) being that lawmakers should move beyond traditional 

family policies such as tax credits or parental leave, and recognize the role that household 
technology can play in supporting fertility. Encouraging innovation in affordable childcare 

automation, reducing regulatory barriers, and disparities in access are key policy measures 
that could enhance the demographic and economic benefits of technological progress. 

 
However, the deliberately theoretical nature of this paper implies that demonstrating that 
childcare automation would reverse current fertility trends hinges on empirically validating 

the plausibility of conditions required for the model’s predictions to hold. Until such evidence 
is available, the policy implications outlined above should be viewed as exploratory rather 

than actionable. 
 

In closing, this dissertation highlights an underexplored but potentially transformative link 
between automation, fertility, and growth. As advanced economies grapple with the twin 
challenges of demographic decline and technological disruption, understanding how these 

forces interact will be central to designing policies that promote both economic dynamism and 
social resilience. 
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Appendices 
 

A.1. Summary of Model Setup  
 

Growth Dynamics 

 
Final Good Production: 

𝑌𝑡 = 𝐴𝑡

𝜎𝑦
𝐿𝑌,𝑡 

Idea Production: 

𝐴̇𝑡

𝐴𝑡

= 𝑧𝐿𝐴,𝑡𝐴𝑡
−𝛽

 

Population Dynamics: 
𝐿𝐴,𝑡

𝐿𝑌,𝑡
= 𝑙            𝐿𝑡 = 𝐿𝐴,𝑡 + 𝐿𝑌,𝑡 

Population Growth: 
𝐿̇𝑡

𝐿𝑡
=

𝑛̇𝑡

2𝑛𝑡
− 𝑚 

 

Automation Boundary 

 

𝑁̇𝐴,𝑡 = 𝐴𝑡
𝜎𝑛 (1 −

𝑁𝐴,𝑡

ΔN
) (1 − 𝑒𝜅(𝐴crit−𝐴𝑡)) 

 

Household Childbearing Decisions 

 

Utility Function: 
𝑢(𝑐, 𝑛) = log(𝑐) + 𝛿 log(𝑛) 

 

Time and Budget Constraints: 

𝜆𝑡 = 1 − 𝑛𝑡𝜙(𝑁 − 𝑁𝐴,𝑡)   ;    𝑤𝜆𝑡 = 𝑐𝑡 + 𝑛𝑡𝜓𝑁𝐴,𝑡  

 

Maximisation Problem:  

max
𝑐𝑡,𝑛𝑡

:  log(𝑐𝑡) + 𝛿 log(𝑛𝑡)      𝑠. 𝑡.    𝑤(1 − 𝑛𝑡(𝑁 − 𝑁𝐴,𝑡)𝜙) = 𝑐𝑡 + 𝑛𝑡𝑁𝐴,𝑡𝜓 

 

Closed-Form Fertility Solution: 

𝑛𝑡 =
𝛿

1 + 𝛿
∙

𝑤

𝑤𝜙(𝑁 − 𝑁𝐴,𝑡) + 𝜓𝑁𝐴,𝑡
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A.2. Fertility Solution Derivation 
 
We start from the utility maximisation problem: 

max
𝑐𝑡,𝑛𝑡

:  log(𝑐𝑡) + 𝛿 log(𝑛𝑡)      𝑠. 𝑡.    𝑤(1 − 𝑛𝑡(𝑁 − 𝑁𝐴,𝑡)𝜙) = 𝑐𝑡 + 𝑛𝑡𝑁𝐴,𝑡𝜓 

 

Isolate 𝑐𝑡: 

𝑤(1 − 𝑛𝑡(𝑁 − 𝑁𝐴,𝑡)𝜙) = 𝑐𝑡 + 𝑛𝑡𝑁𝐴,𝑡𝜓    ⇔     𝑐𝑡 = 𝑤(1 − 𝑛𝑡(𝑁 − 𝑁𝐴,𝑡)𝜙) − 𝑛𝑡𝑁𝐴,𝑡𝜓 

 

Substitute into the objective function: 

max
𝑛𝑡

:  log(𝑤(1 − 𝑛𝑡(𝑁 − 𝑁𝐴,𝑡)𝜙) − 𝑛𝑡𝑁𝐴,𝑡𝜓) + 𝛿 log(𝑛𝑡) 

 

Define:    𝐶(𝑛𝑡) = 𝑤(1 − 𝑛𝑡(𝑁 − 𝑁𝐴,𝑡)𝜙) − 𝑛𝑡𝑁𝐴,𝑡𝜓 

 
Differentiate with respect to 𝑛𝑡 and set the F.O.C.  

𝜕

𝜕𝑛𝑡

[log(𝐶(𝑛𝑡)) + 𝛿 log(𝑛𝑡)] =
−𝑤(𝑁 − 𝑁𝐴,𝑡)𝜙 − 𝑁𝐴,𝑡𝜓

𝐶(𝑛𝑡)
−

𝛿

𝑛𝑡

= 0 

 

Solving for 𝒏𝒕: 

−𝑤(𝑁 − 𝑁𝐴,𝑡)𝜙 − 𝑁𝐴,𝑡𝜓

𝐶(𝑛𝑡)
= −

𝛿

𝑛𝑡
 

⇒    (−𝑤(𝑁 − 𝑁𝐴,𝑡)𝜙 − 𝑁𝐴,𝑡𝜓)𝑛𝑡 = −𝛿𝐶(𝑛𝑡) 

⇒    (−𝑤(𝑁 − 𝑁𝐴,𝑡)𝜙 − 𝑁𝐴,𝑡𝜓)𝑛𝑡 = −𝛿[𝑤(1 − 𝑛𝑡(𝑁 − 𝑁𝐴,𝑡)𝜙) − 𝑛𝑡𝑁𝐴,𝑡𝜓] 

 
Expand and group by 𝑛𝑡  terms: 

⇒    [−𝑤(𝑁 − 𝑁𝐴,𝑡)𝜙 − 𝑁𝐴,𝑡𝜓 − 𝛿𝑤(𝑁 − 𝑁𝐴,𝑡)𝜙 − 𝛿𝑁𝐴,𝑡𝜓] 𝑛𝑡 = −𝛿𝑤 

 
Isolate 𝑛𝑡:  

𝑛𝑡 =
𝛿𝑤

(1 + 𝛿)[𝑤𝜙(𝑁 − 𝑁𝐴,𝑡) + 𝜓𝑁𝐴,𝑡]
 

 
Rearrange for the final solution: 

 

𝑛𝑡 =
𝛿

1 + 𝛿
∙

𝑤

𝑤𝜙(𝑁 − 𝑁𝐴,𝑡) + 𝜓𝑁𝐴,𝑡
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A.3. Engaging With Doepke et al. (2023) Derivation 
 
Recall:  

𝑛𝑡 =
𝛿

1 + 𝛿
∙

𝑤𝑚 + 𝑤𝑓

𝑁𝐴,𝑡𝜓 + (𝑁 − 𝑁𝐴,𝑡)𝑤𝑓𝜙
 

and 

𝜕𝑛𝑡

𝜕𝑤𝑓
=

𝛿

1 + 𝛿
∙

𝑁𝐴,𝑡𝜓 − (𝑁 − 𝑁𝐴,𝑡)𝑤𝑚𝜙

  [𝑁𝐴,𝑡𝜓 + (𝑁 − 𝑁𝐴,𝑡)𝑤𝑓𝜙]
2

 
= 0 

 
We take the cross-partial derivative of 𝑛𝑡 with respect to 𝑤𝑓  and 𝑁𝐴,𝑡: 

  

𝜕2𝑛𝑡

𝜕𝑤𝑓𝜕𝑁𝐴,𝑡
=

𝛿

1 + 𝛿
∙

(𝜓 + 𝑤𝑚𝜙)[𝑁𝐴,𝑡𝜓 + (𝑁 − 𝑁𝐴,𝑡)𝑤𝑓𝜙]
2

− [𝑁𝐴,𝑡𝜓 − (𝑁 − 𝑁𝐴,𝑡)𝑤𝑚𝜙] ∙ 2[𝑁𝐴,𝑡𝜓 + (𝑁 − 𝑁𝐴,𝑡)𝑤𝑓𝜙](𝜓 − 𝑤𝑓𝜙)

  [𝑁𝐴,𝑡𝜓 + (𝑁 − 𝑁𝐴,𝑡)𝑤𝑓𝜙]
4

 
> 0 

⇒ (𝜓 + 𝑤𝑚𝜙)[𝑁𝐴,𝑡𝜓 + (𝑁 − 𝑁𝐴,𝑡)𝑤𝑓𝜙]
2

− [𝑁𝐴,𝑡𝜓 − (𝑁 − 𝑁𝐴,𝑡)𝑤𝑚𝜙] ∙ 2[𝑁𝐴,𝑡𝜓 + (𝑁 − 𝑁𝐴,𝑡)𝑤𝑓𝜙](𝜓 − 𝑤𝑓𝜙) 

⇒ (𝜓 + 𝑤𝑚𝜙)[𝑁𝐴,𝑡𝜓 + (𝑁 − 𝑁𝐴,𝑡)𝑤𝑓𝜙] > 2[𝑁𝐴,𝑡𝜓 − (𝑁 − 𝑁𝐴,𝑡)𝑤𝑚𝜙](𝜓 − 𝑤𝑓𝜙) 

Which holds under the conditions:  

𝜓 > 𝑤𝑓𝜙     and     𝑤𝑚 ≥ 𝑤𝑓  

In that case, the following is assured: 

𝜕2𝑛𝑡

𝜕𝑤𝑓𝜕𝑁𝐴,𝑡

> 0 
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A.4. Simulation Scripts 
 
All scripts can be accessed by clicking the GitHub button to access the script online. 
 

Evolution of the Automation Boundary 𝑵𝑨,𝒕 

Figure 2 

The AutoBoundary_TechLvl.py simulation script was coded on Python when I was designing 
the automation boundary function (around Jan 2025), as a way to test that it behaved as 
expected.  

 

Fertility Solution ( 𝒏𝒕) Comparative Statics 

All coded during the writing process of the dissertation (around April 2025) to serve as 
illustrations of the comparative statics analysis of fertility solution equation (14). I switched 

from Python to R code for higher code efficiency.  
 

There is one script per parameter/variable studied. Each script defines 𝑛𝑡 as a function of the 
studied parameter/variable and – ceteris paribus – computes the values for both 𝑛𝑡 and its 

partial differential with respect to the studied parameter/variable. Different outputs are 
obtained by changing the parameter settings at the start of each script. 
 

 Childrearing Preference 𝛿: sim_n(delta).R 
Figure 3 

 

 Avg. Time Cost of Tasks 𝜙: sim_n(phi).R 
Figures 4 and 5 

 

 Avg. Monetary Cost of Tasks 𝜓: sim_n(psi).R 
Figures 6 and 7 

 

 Wages 𝑤: sim_n(w).R 
Figures 8, 9, and 10 

 

 Automation 𝑁𝐴,𝑡: sim_n(N_At).R 
Figures 11, 12, and 13 

 

Engaging with Doepke et al. (2023) 
Figure 14 

The sim_partialDiff(N_At).R script simulates the behaviour of the partial derivative of 𝑛𝑡 
with respect to 𝑤𝑓  as a function of 𝑁𝐴,𝑡 

 
  

https://github.com/maxdlpt/EC331/blob/main/DissertationScripts/sim_n(delta).R
https://github.com/maxdlpt/EC331/blob/main/DissertationScripts/sim_n(phi).R
https://github.com/maxdlpt/EC331/blob/main/DissertationScripts/sim_n(psi).R
https://github.com/maxdlpt/EC331/blob/main/DissertationScripts/sim_n(w).R
https://github.com/maxdlpt/EC331/blob/main/DissertationScripts/sim_n(N_At).R
https://github.com/maxdlpt/EC331/blob/main/DissertationScripts/sim_partialDiff(N_At).R
https://github.com/maxdlpt/EC331/blob/main/DissertationScripts/AutoBoundary_TechLvl.py
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